QUALIFYING EXAM (ALGEBRA)

Each problem has 10 points.

- 1. Let G be an abelian group. Prove that $\{g \in G \mid |g| < \infty\}$ is a subgroup of G (called the torsion subgroup of G). Give an explicit example where this set is not a subgroup when G is non-abelian.
- 2. Let G be a group. Prove that $N = \langle x^{-1}y^{-1}xy | x, y \in G \rangle$ is a normal subgroup of G(N) is called the commutator subgroup of G(N) and G(N) is abelian.
- 3. Prove that the number of Sylow p-subgroups of $GL_2(\mathbb{F}_p)$ is p+1.
- 4. Let x be a nilpotent element (i.e, $x^m = 0$ for some $m \in \mathbb{Z}^+$) of the commutative ring R with an identity. Prove that 1 + rx is a unit in R for all $r \in R$.
- 5. Prove that $x^{n-1} + x^{n-2} + \cdots + x + 1$ is irreducible over \mathbb{Z} if and only if n is a prime.
- 6. (a) An element m of the R-module M is called a torsion element if rm = 0 for some nonzero element $r \in R$. Let Tor(M) be the set of torsion elements of M. Prove that if R is an integral domain then Tor(M) is a submodule of M.
 - (b) Let V be a 2-dimensional vector space over \mathbb{R} . Show that there is an element in $V \otimes_{\mathbb{R}} V$ cannot be written as a simple tensor.
- 7. Let R be a discrete valuation ring. Show that R is an Euclidean domain.
- 8. Prove that $\text{Hom}_{\mathbb{Z}}(\mathbb{Z}/n\mathbb{Z}, \mathbb{Z}/m\mathbb{Z}) \cong \mathbb{Z}/(n, m)\mathbb{Z}$.
- 9. (a) Find all similarity classes of 6×6 matrices over \mathbb{Q} with minimal polynomial $(x+2)^2(x-1)$.
 - (b) Determine all possible Jordan canonical forms for a linear transformation with characteristic polynomial $(x-2)^3(x-3)^2$.
- 10. Prove that an $n \times n$ matrix A with entries in \mathbb{C} satisfying $A^3 = A$ can be diagonalized.

Ph.D Qualifying Exam Complex Analysis Aug 2014 (3 hours)

Problem 1 (10pt). Find a conformal map of a horizontal strip $\{-A < Im z < A\}$ onto the left half-plane $\{Rew < 0\}$.

Problem 2 (20pt). Evaluate the following integrals

(1)
$$\int_0^\infty \frac{\log x}{x^2 + a^2} \, dx = \frac{\pi}{2a} \log a, \qquad a > 0$$
(2)
$$\int_0^\infty \sin x^2 \, dx = \int_0^\infty \cos x^2 \, dx = \frac{\sqrt{\pi}}{2\sqrt{2}}$$

(Hint. Perform a contour integral on a sector cornered at 0, R, and $Re^{i\pi/4}$.)

Problem 3 (10pt). Show that if f is analytic in the unit disc, is bounded, and converges uniformly to zero in the sector $0 < \arg z < \pi/4$ as $|z| \to 1$, then f = 0.

Problem 4 (20pt).

(1) Find and classify the singularities of

$$f(z) = \frac{(z-1)^2}{(z-2)^2 \sin \pi z} e^{\frac{1}{z^2}}.$$

(eq. removable, poles (and its order), or essential singularities.)

(2) Suppose that f(z) has an isolated singularity at $z = z_0$, and that $\lim_{z \to z_0} (z - z_0)^{\alpha} f(z) = M \neq 0$. Prove that α must be an integer.

Problem 5 (30pt). Let f(z) be analytic in a neighborhood of $|z| \le 1$ and assume that |f(z)| = 1 for |z| = 1.

- (1) Assume that f(z) has no zeros in |z| < 1. Show that $f(z) = e^{i\theta}$ for some $\theta \in \mathbb{R}$.
- (2) Show that if f(z) may have zeros in |z| < 1, then they are at most finitely many.
- (3) Let a_1, \dots, a_k be zeros in |z| < 1 of f(z) (repeated with multiplicities.) Show that f(z) is expressed as

$$f(z) = e^{i\theta} \prod_{j=1}^{k} \frac{z - a_j}{1 - \overline{a_j}z}.$$

Problem 6 (10pt). Suppose that f(z) is a meromorphic function in \mathbb{C} . Show that if |f(z)| is bounded for |z| > R for some R > 0, then f(z) is a rational function.

Numerical Analysis Qualifying Exam

August 2014

- 1. (7 points each) We consider uniform approximation to a continuous function f on an interval [a, b] from the space Π_n of all polynomials of degree $\leq n$.
 - (a) Assuming f is even and is monotone decreasing on $[0, \infty)$, find the best uniform approximation to f from Π_1 on the interval [-a, a]. Justify your choice.
 - (b) Prove that for every n, there exists a sufficiently large a such that the best approximation to the function $f(t) := \cos t$ on [-a, a] from Π_n is the zero polynomial.
 - (c) Prove or disprove the following statement: if, for some K > 0, 0 is the best approximation to $\sin t$ from Π_n on [0, K], then 0 is also the best approximation from Π_n on that interval to $\cos t$.
- 2. (7 points each) We consider numerical approximations to the integral

$$\int_0^1 f(x) \, dx \, .$$

- (a) Derive an error formula for the composite trapezoidal rule (using a uniform partition).
- (b) Derive from the composite trapezoidal rule another rule by a one-step application of Richardson extrapolation. What is the order of the new rule?
- (c) Compare the composite trapezoidal rule to the composite midpoint rule (in terms of the error estimates, and in any other terms you choose).
- 3. (3 points each) Consider a differential equation

$$y' = f(x, y) \qquad y(x_0) = Y_0$$

with f(x, y) continuous and satisfying the Lipschitz condition

$$|f(x, y_1) - f(x, y_2)| \le K|y_1 - y_2| - \infty < y_1, y_2 < \infty$$
 $x_0 \le x \le b$

for some $K \geq 0$. Which of the following Linear Multistep Methods are convergent? For the ones that are not, are they inconsistent, or not stable, or both?

i.
$$y_{n+2} = \frac{1}{2}y_{n+1} + \frac{1}{2}y_n + 2hf(y_{n+1})$$

ii. $y_{n+1} = y_n$

iii.
$$y_{n+4} = y_n + \frac{4}{3}h\left(f(y_{n+3}) + f(y_{n+2}) + f(y_{n+1})\right)$$

iv.
$$y_{n+3} = -y_{n+2} + y_{n+1} + y_n + 2h\left(f(y_{n+2}) + f(y_{n+1})\right)$$

4. (7 points each) Consider the iteration method

$$x^{(k+1)} = Mx^{(k)} + b$$

where $x^{(k)}$ and b are vectors in \mathbf{R}^n , $M \in \mathbf{R}^{n \times n}$, and $x^{(0)}$ is a given initial guess. Assume that ||M|| < 1, where ||M|| is a matrix norm induced by the vector norm ||x||. Show that

- (a) The process is convergent to the unique solution of the linear system x = Mx + b.
- (b) Prove that

$$||x^{(k)} - x|| \le ||(I - M)^{-1}|| \cdot ||x^{(k+1)} - x^{(k)}||.$$

(c) Show also that

$$||x^{(k)} - x|| \le ||M||^k ||x^{(0)}|| + \frac{||M||^k ||b||}{1 - ||M||}.$$

- 5. (a) (5 points) Define "a Householder matrix". Give an example of a 3×3 Householder matrix whose entries are all non-zero.
 - (b) (5 points) Prove that every Householder matrix H is symmetric, orthogonal, and self-invertible (i.e., $H^2=I$).
 - (c) (10 points) Discuss briefly a numerical algorithm that employs Householder matrices.
 - (d) (5 points) Prove or disprove: every symmetric, orthogonal, self-invertible matrix is a Householder matrix.

Real Analysis (Summer 2014)

1. (15 points) Suppose E is a measurable subset of \mathbb{R} with m(E) > 0. Prove that the difference set of E, which is defined by

$$\{z \in \mathbb{R} : z = x - y \text{ for some } x, y \in E\},\$$

contains an open interval centered at the origin.

2. (20 points) Find the values of the following limits:

(a)
$$\lim_{n\to\infty} \int_0^n \left(1-\frac{x}{n}\right)^n e^{x/2} dx$$

(b)
$$\lim_{n\to\infty} \int_0^n \left(1+\frac{x}{n}\right)^n e^{-2x} dx$$

3. (15 points) Give an example of an increasing function on \mathbb{R} whose set of discontinuities is precisely \mathbb{Q} .

4. (20 points) Let F be an increasing function on [0,1] with F(0)=0 and F(1)=1. Let μ be a Borel measure defined by $\mu((a,b))=F(b^-)-F(a^+)$ and $\mu(\{0\})=\mu(\{1\})=0$. Suppose that the function F satisfies a Lipschitz condition $|F(x)-F(y)| \leq A|x-y|$ for some A>0. Let m be the Lebesgue measure on [0,1].

(a) Prove that $\mu \ll m$.

(b) Prove that $\frac{d\mu}{dm} \leq A$ almost everywhere.

5. (15 points) Assume that $f \in L^q(\mathbb{R})$ for some $1 \leq q < \infty$. Prove that

$$\lim_{n\to\infty} \|f\|_p = \|f\|_{\infty}.$$

6. (15 points) Consider the operator on $L^2([0,1])$ defined by T(f)(t) = tf(t). Prove that T is a bounded operator with $T = T^*$, but that T is not compact.

Qualifying Exam 2014 in Advanced Statistics

September, 2014

1. (10pt) Suppose that the number Y of lifetime events of domestic violence for a typical woman in Daejeon is assumed to follow a distribution with a pdf as

$$p_Y(y;\lambda) = \lambda^y e^{-\lambda}/y!, \quad y = 0, 1, \dots, \infty, \quad \lambda > 0.$$

Let Y_1, Y_2, \ldots, Y_n constitute a random sample of size n (where n is large) from this population.

- (a) (5pt) Suppose you believe that reported values of Y greater than zero (especially large reported values) are not very accurate, but that reported values of Y equal to zero are accurate. As a possible remedy, you want to analyze the data by converting each Y_i to a dichotomous random variable X_i (i.e., $X_i = 1$ if $Y_i \ge 1$ and $X_i = 0$ if $Y_i = 0$). Using the n mutually independent dichotomous random variables X_1, \ldots, X_n , find an explicit expression for the MLE $\hat{\lambda}^*$ of λ and its large sample variance.
- (b) (5pt) Make a quantitative comparison between the properties of $\hat{\lambda}^*$ and $\hat{\lambda}$, where $\hat{\lambda}$ is the MLE for λ obtained by using Y_1, \ldots, Y_n in two situations: (1) $\{Y_i\}_{i=1}^n$ are accurate; (2) $\{Y_i\}_{i=1}^n$ are not accurate but $\{X_i\}_{i=1}^n$ are accurate. Be sure to comment on issues of validity (i.e., bias) and precision (i.e., variability).
- 2. (10pt) Let Y_1, \ldots, Y_n constitute a random sample of size n from a N(0, σ^2) population. A certain statistician proposes to estimate the unknown parameter $\theta = \sigma^2$ using the estimator

$$\hat{\theta} = k_1 \frac{\sum_{i=1}^{n} Y_i^2}{n} + k_2 \frac{(\sum_{i=1}^{n} Y_i)^2}{n},$$

where $k_1 + k_2 = 1$. First, prove that $\hat{\theta}$ is an unbiased estimator for θ . Then, find specific values for k_1 and k_2 that minimize $V(\hat{\theta})$. How do these choices for k_1 and k_2 relate to the MVUE and MVBUE estimators for θ ?

- 3. (20pt) Suppose that X_1, X_2, \ldots, X_n constitute a random sample of size n from a $N(\mu, \sigma^2)$ population. Then, consider the n random variables Y_1, Y_2, \ldots, Y_n , where $Y_i = e^{X_i}$, $i = 1, \ldots, n$.
 - (a) (3pt) Find a density function of the random variable Y_i .
 - (b) (2pt) Prove that $E(Y_i) = exp(r\mu + \frac{r^2\sigma^2}{2}), -\infty < r < \infty$.
 - (c) (5pt) Using the *n* observations Y_1, \ldots, Y_n , find two statistics that are jointly sufficient for μ and σ^2 .

- (d) (10pt) Consider the following two statistics: the arithmetic mean $\bar{Y}_a = \frac{\sum_{i=1}^n Y_i}{n}$ and the geometric mean $\bar{Y}_g = (\prod_{i=1}^n Y_i)^{1/n}$. Derive an explicit expression for Corr (\bar{Y}_a, \bar{Y}_g) . Then, find the limiting value of this correlation as $n \to \infty$, and then comment on your finding.
- 4. (30pt) Let X_1, \ldots, X_{n_1} be a random sample from a Poisson population with mean μ_1 and Y_1, \ldots, Y_{n_2} be a random sample from a Poisson population with mean μ_2 . Further, let $\hat{\mu}_1 = \bar{X} = \frac{\sum_{i=1}^{n_1} X_i}{n_1}$, $\hat{\mu}_2 = \bar{Y} = \frac{\sum_{i=1}^{n_2} Y_i}{n_2}$, and $\hat{\mu} = (n_1 \bar{X} + n_2 \bar{Y})/(n_1 + n_2)$. Testing $H_0: \mu_1 = \mu_2$ vs $H_A: \mu_1 \neq \mu_2$ is of your interest.
 - (a) (6pt) Show that the generalized likelihood ratio statistic $-2ln\hat{\lambda}$ can be expressed as a function of $\hat{\mu}_1$ and $\hat{\mu}_2$.
 - (b) (6pt) Show that the Wald statistic \hat{W} is

$$\hat{W} = (\hat{\mu}_1 - \hat{\mu}_2)^2 / (\frac{\hat{\mu}_1}{n_1} + \frac{\hat{\mu}_2}{n_2})$$

(c) (6pt) Show that the Score statistic \hat{S} is

$$\hat{S} = (\hat{\mu}_1 - \hat{\mu}_2)^2 / (\frac{\hat{\mu}}{n_1} + \frac{\hat{\mu}}{n_2})$$

- (d) (6pt) Suppose that $n_1 = n_2 = 30$, $\hat{\mu}_1 = 6$ and $\hat{\mu}_2 = 5$. Compute the values of $-2ln\hat{\lambda}$, \hat{W} , \hat{S} ; do you reject H_0 at the significance level $\alpha = 0.05$ based on each of the three statistics?
- (e) (6pt) Find an appropriate 95% confidence interval for $\mu_1 \mu_2$. Does this CI support the conclusions of the hypothesis tests in (d)?
- 5. (30pt) A researcher gathers data (x_i, Y_i) on each of a large number n of randomly chosen sparsely populated cities in Korea, where $x_i(>0)$ is the known population size (in millions of people) in city i and Y_i is the random variable denoting the number of people in city i with a certain disease. It is reasonable to assume that Y_i has a Poisson distribution with mean $E(Y_i) = \theta x_i$ where θ is an unknown parameter. Let Y_1, Y_2, \ldots, Y_n constitute a set of mutually independent random variables.
 - (a) (16pt) Derive the following 4 estimators for θ ; (1) the unweighted least squares estimator $(\hat{\theta}_{uls})$; (2) the weighted least square estimator with an appropriate choice of weights $(\hat{\theta}_{wls})$; (3) the method of moments estimator $(\hat{\theta}_{mm})$; (4) the maximum likelihood estimator $(\hat{\theta}_{ml})$.
 - (b) (6pt) Use rigorous arguments to provide what you consider to be the best choice for a $100(1-\alpha)\%$ confidence interval for the unknown parameter θ .
 - (c) (8pt) If $\sum_{i=1}^{n} x_i = 0.82$, what is the power of the UMP test for testing $H_0: \theta = 1$ vs $H_1: \theta > 1$ when the probability of a Type 1 error is approximately equal to 0.05 and when, in reality, $\theta = 5$?

Combinatorics: Qualifying Exam

Name:

August 6, 2014

- 1. (20pts) Let \mathcal{F} be a family of subsets of $\{1, 2, ..., n\}$. Prove that if $|X \cap Y| = k$ for all distinct $X, Y \in \mathcal{F}$, then $|F| \leq n$.
- 2. (20pts) Let G be a simple graph of average degree k. Then G contains an induced subgraph of minimum degree at least k/2.
- 3. (10pts) Let A_1, A_2, \ldots, A_m be distinct subsets of $\{1, 2, \ldots, n\}$.
 - (a) Prove that if $m \ge n+1$, there exist disjoint subsets I, J of $\{1, 2, \dots, m\}$ such that

$$\bigcup_{i\in I}A_i=\bigcup_{j\in J}A_j \text{ and } I\cup J\neq \emptyset.$$

(b) Prove that if $m \ge n+2$, there exist disjoint subsets I, J of $\{1, 2, \dots, m\}$ such that

$$\bigcup_{i\in I}A_i=\bigcup_{j\in J}A_j,\ \bigcap_{i\in I}A_i=\bigcap_{j\in J}A_j,\ \mathrm{and}\ I\cup J\neq\emptyset.$$

- 4. (10pts) Let $A_1, A_2, \ldots, A_m, B_1, B_2, \ldots, B_m$ be sets such that $|A_i| = r$ and $|B_j| = s$ for all $i, j \in \{1, 2, \ldots, m\}$. Assume that
 - (a) $A_i \cap B_i = \emptyset$ for all $i \in \{1, 2, ..., m\}$ and
 - (b) $A_i \cap B_j = \emptyset$ for all i < j.

Prove that $m \leq \binom{r+s}{r}$.

(There'll be a partial credit, if a solution proves for $i \neq j$ in (b) instead of i < j.)

- 5. (20pts) Prove that every simple graph G admits a 3-colorable subgraph with at least 2|E(G)|/3 edges.
- 6. (20pts) Prove that for every k, there exists N such that in every k-coloring of $\{1, 2, ..., N\}$, there are 3 integers a, b, c (not necessarily distinct) such that a, b, c, a+b, b+c, a+b+c have the same color.